Session 6: targeting the lymphoma cell surface

065 INTRODUCTORY LECTURE

P. W. M. Johnson1, M. S. Cragg2, M. J. Glennie2
1CR UK Centre, University of Southampton, Southampton, United Kingdom, 2Tenovus Laboratory, University of Southampton, Southampton, United Kingdom.

The surface architecture of lymphocytes is one of the best-characterised of human cells, thanks to their availability for study in the blood, their key role in immunity and the variety of malignancies to which they give rise. One of the success stories of cancer medicine has been the use of monoclonal antibodies (mAb) to target molecules on the cell surface for therapy, and we continue to uncover novel aspects of biology in refining this approach. The molecules to which mAb have been targeted included several decades ago, and few new ones have emerged in the last 10 years. The earliest target defined as tumour-specific was the B-cell idiotype, whose definition is a defining feature of malignancy and which was successfully, if laboriously, targeted with patient-specific Ab. It was not clear at the time whether the dominant mechanism of action was the induction of signaling through the B-cell receptor or recruitment of effectors to the cell surface, and to some extent this uncertainty persists for mAb therapy generally, but with several important discoveries in the interim. Although few new antigens have been discovered recently, there is increasing interest in effector mechanisms, the role of different Fc receptors, the selective delivery of radiomiodides or toxins, and the use of bispecific molecules to attract T- or NK- cells. The results of anti-idiotype mAb encouraged exploration of selective rather than specific targets, and from this a variety of molecules were identified. A lack of knowledge regarding normal cellular function has not impeded their exploitation for therapy, and by far the most successful target has been CD20, about which relatively little was known until recently. Although perceived as a comparatively inert component of the cell membrane, we have learned that CD20 is a highly dynamic molecule. It can undergo rapid redistribution, and different mAb evoke different patterns of behaviour: those like rituximab ("type I") cause redistribution into lipid-rich rafts, mediate complement fixation and antibody-directed cell-mediated cytotoxicity (ADCC). In contrast, those like the first anti-B-cell mAb characterised, B1 ("type II") do not cause redistribution into rafts but mediate homotypic cell adhesion and stimulate programmed cell death. These differences have important therapeutic results, and we have found that on some lymphomas type I mAb mediate rapid internalization of CD20 with lysosomal consumption, while type II do not. Our understanding of mAb action at the lymphoma cell surface continues to evolve, and the complex interactions of Ab half-life, isotype and Fc effector cell biology are increasingly recognized as critical to therapy. We are also returning to discarded approaches such as immunotoxins, which now benefit from advances in chemistry to improve their therapeutic ratio.

066 RESULTS FROM A PHASE II STUDY (BO20999) OF RO5072759 (GA101) MONOTHERAPY IN RELAPSED/REFRACTORY NON-HODGKIN’S LYMPHOMA

G. Sales1, F. Morschhauser2, C. Thielbrom2, P. Solal Celigny3, T. Lamy3, J. Brikett4, G. Cartron4
1Hematologie, Hospices Civils de Lyon-Universite de Lyon, Pierre Benite, France, 2Hematologie, Centre Hospitalier Universitaire, Lille, France, 3Hematologie, Hospital Saint-Louis, Paris, France, 4Hematologie, Centre Jean Bernard, Le Mans, France.

Background: GA101 is a human IgG1 exclusively antigenic anti-CD20 mAb being investigated in patients with Hodgkin’s lymphoma (HL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), or mucosal associated lymphoid tissue (MALT). We report results of a single-center, open-label, multi-center, phase II study (BO20999) of GA101 in relapsed/refractory (R/R) NHL (HL, FL, DLBCL, MCL, MALT).

Methods: Patients were eligible if they had R/R NHL with no prior anti-CD20 therapy and no previous R/R HL. Patients with HL were excluded if they had received prior anthracyclines or other multi-agent chemotherapy. Patients received GA101 at 400 mg once every 3 weeks for up to 8 cycles. The primary endpoint was ORR (CR + PR) and duration of response (DOR). Other secondary endpoints included safety, pharmacokinetics, and time to next treatment (TTNT).

Results: A total of 66 patients were included in the study. GA101 was well tolerated with a manageable safety profile. The most common grade 1-2 adverse events were neutropenia, fatigue, anorexia, and nausea. Grade 3-4 adverse events included neutropenia, infections, and lipase elevation. ORR was 32% (22/66 patients) with a median DOR of 16 weeks. TTNT was 7 months (range 1 - 23 months). The median number of cycles was 3 (range 1 - 8). The safety profile was consistent with previous studies of GA101.

Conclusions: GA101 showed promising activity in R/R NHL with a manageable safety profile. Further studies are warranted to evaluate the role of GA101 in the management of R/R NHL.

067 ANTI-CD40 MONOCLONAL ANTIBODY LUCATUMUMAB EXHIBITS ANTI-TUMOR ACTIVITY IN FOLLICULAR LYMPHOMA AND OTHER LYMPHOMA SUBTYPES: PHASE II/III PRELIMINARY FINDINGS

1Medical Oncology, DFCI, Boston, United States, 2Medical Oncology, U of Toronto, Toronto, Canada, 3Hematology, McGill U, Montreal, Canada, 4Internal Medicine, U of Cologne, Cologne, Germany, 5Internal Medicine, Seoul National U Hospital, Seoul, Korea, Republic of, 6Hematology, Service d’Hematologie, Le Mans, France, 7Hematology, U. of Milano, Milan, Italy, 8Hematology, U Hospital Gasthuisberg, Leuven, Belgium, 9Lymphoma and Myeloma, MDACC, Houston, United States, 10Oncology, Novartis, East Hanover, United States.

Background: Lucatumumab (HCD122) is a fully human IgG1 bispecific anti-CD40 mAb undergoing clinical evaluation in patients with Hodgkin’s lymphoma (HL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), or mucosal associated lymphoid tissue (MALT). We report preliminary activity in phase II/III studies.

Methods: Patients with R/R NHL were randomized to receive lucatumumab at 1 mg/kg or 3 mg/kg, or placebo (PBO). The primary endpoint was objective response rate (ORR) at 6 months. Safety, PK, and pharmacodynamic (PD) data were collected.

Results: A total of 220 patients were enrolled in the phase II/III studies. ORR at 6 months was 26% in the 1 mg/kg arm, 24% in the 3 mg/kg arm, and 11% in the PBO arm. Median PFS was 6 months in the 1 mg/kg arm and 11 months in the 3 mg/kg arm. The most common adverse events were chills, nausea, and infusion-related reactions. The safety profile was consistent with previous studies of lucatumumab.

Conclusions: Lucatumumab showed promising activity in R/R NHL with an acceptable safety profile. Further studies are warranted to evaluate its role in the management of R/R NHL.

© The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com
068 BLINATUMOMAB (CD3/CD19 BITE® ANTIBODY) RESULTS IN A HIGH RESPONSE RATE IN PATIENTS WITH RELAPSED NON-HODGKIN Lymphoma (NHL) INCLUDING MCL AND DLBCL

1Medizinische Klinik II, University Hospital Würzburg, Würzburg, Germany, 2Abt. Innere Medizin III, Universitätsklinikum Ulm, Ulm, Germany, 3Klinik für Hämatologie, Universitätsklinikum Essen, Essen, Germany, 4Medizinische Klinik 5, Universität Erlangen-Nürnberg, Erlangen, Germany, 5Medizinische Klinik II, Universitätsklinik Tübingen, Tübingen, Germany, 6Micromet AG Munich, Germany, 7Melanoma Research Foundation, Bethesda, United States

Blinatumomab (MT103) is a single-chain bispecific antibody construct designed to use a patient’s own cytotoxic T cells to attack CD19-positive tumor cells, and becomes a new class of agents called bispecific T cell engager (BiTE) antibodies. Blinatumomab leads to peripheral B cell depletion, proliferation of T effector cells, and induces objective clinical responses. Here, we update the results of an ongoing phase 1 trial in patients with relapsed NHL. Seven dose levels, ranging from 0.5 to 90 mg/m²/d, have been tested in 62 patients. Blinatumomab is delivered by continuous intravenous infusion over 4-8 weeks as single agent. Most AEs were early-onset, transient, reversible, easily managed, and did not require treatment discontinuations. The most common clinical AEs include fever, chills, headache, fatigue, and weight increase. The clinically most relevant AEs were fully reversible CNS events (e.g., seizures, disorientation, confusion, cerebellar symptoms) seen primarily at the onset of treatment. A low peripheral blood B:T cell ratio as a biomarker for patients with a higher frequency of reversible neurological adverse events is now prospectively used to stratify patients and to further optimize treatment. A dose-related effect was seen with first responses at 15 mg/m²/d and a much higher response rate at 60 mg/m²/d. Initial infusion with 90 mg/m²/d exceeded the maximal tolerable dose. Among evaluable patients who received 60 mg/m²/d, 82% (18 of 22) achieved an objective response. Response duration is currently up to 32 months with 11 of 18 responses still ongoing. In DLBCL, three out of five patients receiving 60 mg/m²/d blinatumomab achieved at least a CR (median follow-up of 48 months; range 1-58 months). Four of five evaluable MCL patients treated at the target dose (55 mg/m²) had an objective response including three patients with at least a CR. Response duration is currently up to 24+ months. These data confirm high single-agent activity of 60 mg/m²/d blinatumomab continuously infused for 4-8 weeks with long-lasting remissions and a favorable risk/benefit profile. First efficacy signals in patients with DLBCL have been observed.

069 INOTUZUMAB OZOGAMICIN (INO, CMC-544) IN PTS WITH INDOLENT B-CELL NHL REFRACTORY TO RITUXIMAB (R), R PLUS CHEMOTHERAPY, OR RADIOIMMUNOTHERAPY (RIT)

1Onco-Hematology, Hospices Civils de Lyon Sud, Pierre-Benite, France, 2Hematology, Institut Gustave Roussy, Villejuif, France, 3Hematology, CHU Henri Mondor-Chenevier, Creteil, France, 4Hematology, Centre Henri Becquerel, Rouen, France, 5Hematology, CHU Henri Mondor-Chenevier, Creteil, France, 6Hematology, CHU Lille, Lille, France, 7Hematology, CHU Pontchaillou, Rennes, France, 8Anatomie pathologique, CHU Heni Mondor-Chenevier, Creteil, France, 9Hematology, Centre Henri Becquerel, Rouen, France, 10Hematology, CHU Pontchaillou, Rennes, France, 11R&D, ImmunoGen, Inc., Wattham, United States, 12R&D, Sanofi-Aventis, Paris, France

INO is a humanized anti-CD22 antibody conjugated to calicheamicin, a potent antitumor antibiotic. CD22 is expressed on the majority of B-cell NHL. Safety and efficacy of INO were evaluated in indolent B-cell NHL refractory to R, R plus chemotherapy, or RIT. Patients: Pts had CD22+ indolent B-cell NHL (follicular not transformed [FL], marginal zone [MZL], and small lymphocytic lymphoma [SLL]) with progression after 2× systemic therapies and no response/progression within 6 mo of completion of R-containing therapy or within 12 mo of RIT completion. Pts received INO 1.8 mg/m² every 8 d for 4-8 cycles, with dose and/or frequency adjusted based on toxicities. Results: 59 pts have been enrolled and dosed with INO: 50 with FL, 5 with MZL, 3 with SLL and 1 with indolent NHL unspecified. Median age was 62 y (range 29-84 y); 44% were male; pts were heavily pretreated: median of 3 prior anticancer regimens, 5% had 1 prior regimen, 35% had 2, 22% had 3 and 38% had 4+. Based on FLIPI, 20%, 26% and 54% of FL pts, respectively, were low, intermediate and high risk. Common TEAEs (>30%, all grades) were thrombocytopenia (67%), neutropenia (52%), elevated AST (47%), nausea (47%), fatigue (43%), leukopenia (34%) and lymphopenia (34%). Grade 3/4 TEAEs (>5%) were thrombocytopenia (50%), neutropenia (31%), lymphopenia (16%), leukopenia (7%), increased GGT (7%), nausea (5%) and elevated AST (5%). 21 serious AEs were reported for 10 pts. 18 (31%) pts discontinued treatment due to AEs, most due to persistent grade 2 toxicity that failed to recover to grade 1/0 within the 28-day dose delay period allowed per protocol. AEs leading to treatment discontinuation were thrombocytopenia (n = 13), neutropenia (n = 4), increased GGT (n = 2), and hepatic dysfunction, hyperbilirubinemia, leukopenia and pneumonia (n = 1 each). Of 53 evaluable pts, ORR was 55% (62% in FL); 10 FL pts had complete response. PFS at 12 mo was 50%. 9 deaths (disease progression [n = 7], aspiration pneumonia [n = 1], sepsis [n = 1]) were reported, all >30 d from the last INO dose.

Conclusions: In pts with relapsed/refractory indolent B-cell NHL, INO demonstrated definitive clinical activity and had a similar safety profile to that previously reported, with hematologic, GI and hepatic lab abnormalities being the most common.

070 PHASE I/II STUDY OF THE ANTI-CD19 MAYTANSINOID IMMUNOCONJUGATE SAR3419 ADMINISTERED WEEKLY TO PATIENTS (PTS) WITH RELAPSED / REFRACTORY B-CELL NON-HODGKIN’S Lymphoma (NHL)

B. Coiffier1, V. Ribrag2, J. Dupuis3, H. Tilly5, C. Haioun5, F. Morschhauser6, T. Lamy7, C. Copie8, O. Brehar9, R. Houot10, J. Lambert11, R. Morariu-Zamfir12
1Onco-Hematology, Hospices Civils de Lyon Sud, Pierre-Benite, France, 2Hematology, Institut Gustave Roussy, Villejuif, France, 3Hematology, CHU Henri Mondor-Chenevier, Creteil, France, 4Hematology, Centre Henri Becquerel, Rouen, France, 5Hematology, CHU Henri Mondor-Chenevier, Creteil, France, 6Hematology, CHU Lille, Lille, France, 7Hematology, CHU Pontchaillou, Rennes, France, 8Anatome pathologique, CHU Henri Mondor-Chenevier, Creteil, France, 9Hematology, Centre Henri Becquerel, Rouen, France, 10Hematology, CHU Pontchaillou, Rennes, France, 11R&D, ImmunoGen, Inc., Wattham, United States, 12R&D, Sanofi-Aventis, Paris, France

SAR3419 (huB4-DM4) is an antibody-drug conjugate composed of a human IgG1 monoclonal antibody, huB4, which specifically targets the CD19 antigen, conjugated through a disulfide link to the maytansinoid derivative DM4, a potent tubulin inhibitor. After binding to the CD19 antigen, SAR3419 undergoes internalization and intracellular release of DM4. In this phase I/II study SAR3419 was administered by intravenous infusion, weekly for 8 to 12 doses, to pts with relapsed / refractory B-cell NHL expressing CD19. Forty-four pts were enrolled at 7 dose levels from 10 to 70 mg/m², 1 pt had a protocol defined dose limiting toxicity of neutropenia and 2 pts had grade ≥3 significant toxicities with late onset; blurred vision associated with corneal deposits and left branch bundle block. The maximum tolerated dose (MTD) was defined at 55 mg/m². Of 22 pts at the MTD, 4 pts had related reversible grade 3-4 toxicities after 6-8 doses: optic neuropathy, paraesthesia, neutropenia and thrombocytopenia. Of 38 pts at doses of 20 mg/m² or higher, 12 (32%) pts achieved an objective response including 6 CR/CRu, with no obvious dose effect. Of 22 pts at the MTD (55 mg/m²), 8 (36%) had a response, including 3 CR/CRu. Of 9 pts evaluable for response duration (RD), 4 pts had a RD ranging from 6 to at least 12 months. These results demonstrate evidence of clinical activity and manageable safety, without significant myelosuppression. A modified schedule (4 weekly doses of 55 mg/m² followed by every 2 weeks dosing) is under evaluation. Updated clinical and pharmacokinetic data will be presented.